
Docker at Lyft
Speeding up development
Matthew Leventi @mleventi #dockercon

Lyft Engineering

Lyft Engineering

Organization

- Rapidly growing headcount
- Fluid teams
- Everyone does devops

Technology

- 50+ microservices
- 25 server deploys a day
- 2 client pushes a week
- Highly available

DockerCon 2015

Systems Engineering

DockerCon 2015

Developer Productivity

- New developers ship on Day 1
- Seamless team switches
- Faster feature development

Operational Stability

- everything must scale
- nothing goes down

Developer Productivity

Inefficiencies Multiply...

DockerCon 2015

General Problems

“It doesn’t work on my box!”

“I don’t understand how the client got into that state!”

“It worked in development!”

“How do I get service X to talk to service Y?”

“How do I test this feature from the client?”

“How do I get started working on a new team?”

DockerCon 2015

Invest in Dev Environments

In the past...

DockerCon 2015

AWS Dev EC2 Instances - 1 per dev per service

NFS syncing for code changes

 Service discovery through dev config sections

Manual task to stay up to date on changes

Individual SQS, Dynamo resources per developer

 Expensive to orchestrate

Vagrant VM Images

Hard to run more than 2 on a mac

Hard to interface with cloud resources.

Development Environment

Devbox: Everyone has the same
up to date local environment

Onebox: All of lyft, in the cloud,
running any combination of
builds

CI: Cross service integration
testing, deploys

DockerCon 2015

Devbox

Start a set of services easily:
./service start api dispatch eta

Automatically mount repos into services:
ls .

api dispatch eta payments python-sdk

Load and save state snapshots:
./service snap issue519

./service apply issue519

Open websites locally

 ./service open api

Build new services locally
./service build new_service_X

DockerCon 2015

Onebox

DockerCon 2015

Every QA engineer has their own
environment.

No mocking needed for client
development.

Easy to share state between
developers.

CI

DockerCon 2015

Every service defines test
suites with dependent
services.

Tests are run per pull request
and on master commits.

Isolated cross service
integration tests.

How?

Service Model

- Single fat containers
- Stateless
- Fixed static ip address
- Single “stateful” local

container
- Auto detect code changes

DockerCon 2015

Building a Service Image

- Docker image is a fs snapshot of config management.
- Each image has:

- git clone of a central ops codebase
- git clone of a service codebase
- a salt stack provisioning run.
- runit configuration for processes

ID = $(docker run --env SERVICE=api --env SERVICE_SHA=abc --env OPS_SHA=def lyft/base)

docker commit $ID api

docker push api

No dockerfiles!

DockerCon 2015

Running a Service Image

DockerCon 2015

- Rerun salt provisioning on new SHAs
- Start runit processes
- Terminate the container if initial runit checks fail

Allows

- Developers can easily apply ops modifications
- Testing PRs are a matter of changing env variables
- Don’t need to wait for an image build, deltas are applied during

runtime
- Easy to mount code volumes and trigger changes

Single Host

DockerCon 2015

DevBox

Mac docker host using vmware fusion with shared folders

CI Slave

AWS ubuntu docker host for short lived containers

Onebox

AWS ubuntu docker host for long lived environments

Managing State

DockerCon 2015

All stateful processes run inside the same container.

- Redis
- MongoDB
- DynamoLocal
- SQS Local
- Fake Kinesis

Standard import/export scripts to S3 tar files.

All developers, qa, slaves get their own data environment.

Demo

Results

Results

Productivity

Majority of new hires push to production on day one.

Feature development is no longer blocked by devops.

QA client testing is parallelized.

Stability

 99% of deploys are successful.

Every PR on every service is integration tested.

DockerCon 2015

Lessons Learned

Lessons Learned

VMWare Fusion can be unstable under load

Frequent image downloads take time

Bugs in config management can freeze development

Easy service creation leads to unnecessary services

Approach limits on what can run on a single box

Static IP allocation not supported in docker

DockerCon 2015

Future

Future Ideas

Tons of t2.smalls to replace VMWare:

- One container per host in the cloud
- NFSv4 code syncing
- Same static ip private network using libnetwork
- docker-machine

Exploring production docker usage:

- ETL jobs in docker
- Containers to reduce ASG spin up/down times
- Containers for atomic deploys

Thank you
Matthew Leventi

mleventi@lyft.com @mleventi #dockercon

mailto:mleventi@lyft.com
mailto:mleventi@lyft.com

